Step of Proof: bool_sq
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
bool
sq
:
.....assertion..... NILNIL
1.
x
: ?Unit
2.
y
: ?Unit
3.
x
=
y
4. case
x
of inl(
x
) =>
x
| inr(
x
) =>
x
= case
y
of inl(
x
) =>
x
| inr(
x
) =>
x
5. case
x
of inl(
x
) => True | inr(
x
) => False = case
y
of inl(
x
) => True | inr(
x
) => False
(True = False)
latex
by ((D 0)
THENW ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
T
) inil_term)))
latex
T
1
:
T1:
6. True = False
T1:
False
T
.
Definitions
t
T
,
P
Q
,
A
,
Lemmas
false
wf
,
true
wf
origin